Lexicographic Lipschitz Bandits: New Algorithms and a Lower Bound
Authors
Research Topics
Paper Information
-
Journal:
Journal of Machine Learning Research -
Added to Tracker:
Dec 30, 2025
Abstract
This paper studies a multiobjective bandit problem under lexicographic ordering, wherein the learner aims to maximize $m$ objectives, each with different levels of importance. First, we introduce the local trade-off, $\lambda_*$, which depicts the trade-off between different objectives. For the case when an upper bound of $\lambda_*$ is known, i.e., $\lambda\geq\lambda_*$, we develop an algorithm that achieves a general regret bound of $\widetilde{O}(\Lambda^i(\lambda)T^{(d_z^i+1)/(d_z^i+2)})$ for the $i$-th objective, where $i\in\{1,2,\ldots,m\}$, $\Lambda^i(\lambda)=1+\lambda+\cdots+\lambda^{i-1}$, $d_z^i$ is the zooming dimension for the $i$-th objective, and $T$ is the time horizon. Next, we provide a matching lower bound for the lexicographic Lipschitz bandit problem, proving that our algorithm is optimal in terms of $\lambda_*$ and $T$. Finally, for the case where $m=2$, we remove the dependence on the knowledge about $\lambda_*$, albeit at the cost of increasing the regret bound to $\widetilde{O}(\Lambda^i(\lambda_*)T^{(3d_z^i+4)/(3d_z^i+6)})$, which remains optimal in terms of $\lambda_*$. Compared to existing work on lexicographic multi-armed bandits, our approach improves the current regret bound of $\widetilde{O}(T^{2/3})$ and extends the number of arms to infinity. Numerical experiments confirm the effectiveness of our algorithms.
Author Details
Lijun Zhang
AuthorBo Xue
AuthorJi Cheng
AuthorFei Liu
AuthorYimu Wang
AuthorQingfu Zhang
AuthorResearch Topics & Keywords
Computational Statistics
Research AreaCitation Information
APA Format
Lijun Zhang
,
Bo Xue
,
Ji Cheng
,
Fei Liu
,
Yimu Wang
&
Qingfu Zhang
.
Lexicographic Lipschitz Bandits: New Algorithms and a Lower Bound.
Journal of Machine Learning Research
.
BibTeX Format
@article{paper707,
title = { Lexicographic Lipschitz Bandits: New Algorithms and a Lower Bound },
author = {
Lijun Zhang
and Bo Xue
and Ji Cheng
and Fei Liu
and Yimu Wang
and Qingfu Zhang
},
journal = { Journal of Machine Learning Research },
url = { https://www.jmlr.org/papers/v26/24-1047.html }
}